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Two-qubit gates using adiabatic passage of the Stark-tuned Forster resonances in Rydberg atoms
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We propose schemes of controlled-Z and controlled-NOT gates with ultracold neutral atoms based on
deterministic phase accumulation during double adiabatic passage of the Stark-tuned Forster resonance of
Rydberg states. The effect of deterministic phase accumulation during double adiabatic passage in a two-level
quantum system has been analyzed in detail. Adiabatic rapid passage using nonlinearly chirped pulses with
rectangle intensity profile has been discussed. Nonlinear time dependence of the energy detuning from the
Forster resonance is used to achieve a high fidelity of population transfer between Rydberg states. Fidelity of
two-qubit gates has been studied with an example of the 90S + 965 — 90P + 95 P Stark-tuned Forster resonance

in Cs Rydberg atoms.
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I. INTRODUCTION

Two-qubit quantum gates are the key element of a quantum
computer. In general, any quantum algorithm can be imple-
mented using a two-qubit controlled-NOT (CNOT) gate and
single-qubit rotations [1]. Another example is a controlled-Z
(cz) gate which can be used for universal quantum computa-
tion as well as a CNOT gate. Experimental implementation of
high-fidelity two-qubit gates is a challenging task. A two-qubit
gate error below 107° has been demonstrated recently for
single-ion qubits [2,3]. Scaling trapped ion qubits to very large
quantum registers remains, however, an unsolved challenge.
From this point of view, ultracold neutral atoms can be
more promising candidates for implementation of a scalable
quantum computer [4-8]. Arrays of optical dipole traps can
be used as quantum registers of arbitrary dimensions [9], and
the interaction of the atom qubits to perform two-qubit gates
can be controlled by their temporary excitation to Rydberg
states, which have large dipole moments and experience strong
long-range interactions [4,5,10,11]. For example, the effect of
the Rydberg excitation blockade [11] has been successfully
applied in the experiment to implement a CNOT gate for
ultracold neutral atoms with the fidelity above 0.73 [12]. At the
same time, high-fidelity two-qubit gates with Rydberg atoms
have not been demonstrated yet.

Another approach besides the Rydberg blockade to building
a two-qubit gate is based on controlled phase shifts of
collective states of two qubits due to interaction between
Rydberg atoms [4,10]. The interaction strength should be
adjusted to provide a certain phase shift (for example ),
during the interaction time. This can be easily done with
Stark-tuned Forster resonances that provide fast and flexible
control by manipulating the energies of Rydberg levels with an
electric field [13-22]. The Rydberg levels are adjusted in such

“beterov @isp.nsc.ru

2469-9926/2016/94(6)/062307(9)

062307-1

a way that one Rydberg level lies midway between two other
Rydberg states of the opposite parity. Then a resonant energy
transfer between Rydberg atoms initially excited to the middle
state becomes possible via resonant dipole-dipole interaction.
Stark-tuned Forster resonances for two Rydberg atoms were
first reported in Ref. [23]. The rf-assisted Stark-tuned Forster
resonances have been demonstrated in Refs. [24-27].

If two Rydberg atoms are frozen in space, dipole-dipole
interaction at a Forster resonance induces the Rabi-like
coherent population oscillations between collective states of
these atoms [28]. Such oscillations have been demonstrated
recently for two Rb Rydberg atoms in two optical dipole
traps [29,30]. The frequency of these collective oscillations
is sensitive to variations of the interaction energy due to
fluctuations of the spatial position of the atoms within the
optical dipole traps. For example, a 10% variation of the
distance between the trapped atoms results in a 25% variation
of the interaction energy due to the 1/R3 dependence of the
energy of dipole-dipole interaction on distance R between
the atoms. This can substantially increase the phase gate
error. In this paper we propose to overcome this difficulty
by using a double adiabatic rapid passage across Stark-tuned
Forster resonances with a deterministic phase accumulation.
This technique is closely related to Stark-chirped rapid
adiabatic passage, which is based on a laser-induced Stark
shift [31,32].

A scheme of the Cz gate is shown in Fig. 1(a). Two optical
dipole traps with one atom in each trap are located at a distance
R between them. The two atoms are simultaneously excited
to Rydberg state |r) by a & laser pulse labeled as 1. The
distance between the traps must be sufficiently large to avoid
the effect of the Rydberg blockade [11]. A time-dependent
external electric field shifts the collective energy levels so that
the Forster resonance |rr) — |r'r”) is passed adiabatically two
times. This results in a deterministic phase shift of state |rr).
After the end of adiabatic passage the atoms are deexcited to
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FIG. 1. (a) Scheme of a CZ gate using double adiabatic rapid
passage across Stark-tuned Forster resonance. Two atoms are excited
to Rydberg states. An external electric field shifts the energy levels
of the Rydberg atoms so that the Forster resonance is passed
adiabatically two times. Then the atoms are deexcited to the ground
state. The phase shift is deterministically accumulated if both atoms
are initially prepared in state |1). (b) Scheme of a CNOT gate. Two
additional 77 /2 pulses rotate the target qubit around the y axis in the
opposite directions.

the ground state by a —m laser pulse (which is a 7 laser pulse
with a 7w phase shift) labeled as 2.

The phase shift due to Rydberg-Rydberg interaction is
accumulated only in the case when both atoms are initially
prepared in state |1) and then excited to Rydberg state |r). If
one of the atoms (or both of them) is initially in the state |0),
no phase shift occurs.

A scheme of the CNOT gate is shown in Fig. 1(b). Two
additional m/2 pulses, labeled as 1 and 4, rotate the target
qubit around the y axis in the opposite directions. If the control
qubit is initially prepared in state |0) and is not excited to the
Rydberg state, the pulse sequence acting on the target qubit
returns it back to the initial state. The 7 phase shift due to
the Rydberg-Rydberg interaction results in the inversion of
the state of the target qubit, if the control qubit is initially
prepared in state |1).

The paper is organized as follows. In Sec. II we explain
the effect of deterministic phase accumulation during double
adiabatic rapid passage in a two-level quantum system. In
Sec. III we discuss the features of adiabatic rapid passage
across Stark-tuned Forster resonance for two interacting
Cs Rydberg atoms with nonlinear time dependence of the
detuning from the resonance. Fine structure and finite lifetimes
of the Rydberg states have been taken into account in our
analysis.

II. PHASE ACCUMULATION DURING
ADIABATIC RAPID PASSAGE

Adiabatic rapid passage is commonly used for laser
excitation of molecular levels because of the independence
of transition probability on the Rabi frequency [33]. A number
of schemes for quantum logic using two-photon stimulated
Raman adiabatic passage (STIRAP) [34] and Rydberg excita-
tion has been developed [35,36]. In our previous works [37,38]
we have found that double adiabatic rapid passage returns the
system to the initial state, but with a deterministic phase shift.
This shift is equal to 7 for two identical laser pulses and to
zero if the second laser pulse has the opposite sign of Rabi
frequency. This allowed us to develop schemes of quantum
gates with mesoscopic atomic ensembles, using adiabatic
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passage and Rydberg blockade [37,38]. Below we explain the
effect of deterministic phase accumulation using a theory of
adiabatic rapid passage [39]. The Hamiltonian for a two-level
system with states |1) and |2), interacting with a chirped laser
pulse (laser frequency and intensity change during the pulse),

is written as
A hi( 0 Q(1)
H() = =~ . 1
=3 <Qo<z> 28(1) M
Here 2(¢) is time-dependent Rabi frequency and §(¢) is time-
dependent detuning from the resonance. In the field interaction
representation [39] the wave function is written as

Y(t) = ci(De™ (1) + ea(t)e 2 2). 2)

Here c;(¢) and c,(¢) are probability amplitudes and w is laser
frequency. We define the time-dependent basis states to be
[1()) = €'®'/?|1) and |2(z)) = e~'“"/?|2). In this basis the wave
function is rewritten as follows:

[ (1)) = c1(D1()) + c2()]2(2)). 3)
To diagonalize the Hamiltonian, we rotate the basis:
() \ _ [1(0))
<|11<r>>> =T0 <|2(r>>>' @

Here |1(¢)) and |I1(¢)) are semiclassical dressed states [39]
and T(¢) is a time-dependent unitary rotation matrix:

cosf(t) —sinb(t)
T(t):(sinG(t) cose(z)> )

where 0(¢) is a time-dependent mixing angle. The semiclassi-
cal dressed states are the superpositions:

[1(1)) = cos O(1)|1(t)) — sinO(1)|2(2)),
IT1(1)) = sin6(1)|1(r)) + cos O(1)|2(1)). (6)

To derive the equation for the probability amplitudes of
dressed states €, we substitute the definition € = Tc¢ into the
Schrodinger equation for the probability amplitudes i i¢ = He.
This results in

ih¢ = THT'e — inTT'e. (7)

The matrix THTT is diagonal if the mixing angle 6(¢) obeys
the following conditions:

tan[26(1)] = Qo(1)/5(0),

. 1 a(1)
sin[0(1)] = > (1 - _Q(t))’
1)
cos[@(1)] = 5 (1 + %) (¥

Here Q(t) = /Q3(¢) + 8(¢)*. This leads to

. h(Q.@ o
A, = TAT 2(0 Q+(t)>,

TT' = io,6. 9)

Here Q_ =4(1) — Q@) and Q4 =4(7) + Q7). In the
adiabatic approximation, when |2y(?)|/ Q1) < 1 and
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FIG. 2. Scheme of deterministic phase accumulation during a
double adiabatic passage in a two-level quantum system. The phase
shift is 7z for the left-hand panel and zero for the right-hand panel. The
dynamics of probability amplitudes c;(¢), c2(t), ¢} (1), c,(t) of states
[1(¢),2(¢)) and of probability amplitudes &(z), &(t), ¢'1(t), c’»(t) of
semiclassical dressed states |1(¢),11(¢)) is shown schematically. (a),
(b) Time dependencies of Rabi frequency €2(#) and of detuning (¢).
(¢), (d) Numerically calculated time dependencies of the population
of initial state |1(z)) compared with the calculations in the adiabatic
approximation. (e), (f) Numerically calculated time dependencies of
the phase of initial state |1(¢)) compared with calculations in the
adiabatic approximation.

15(2)] /Q%(t) <« 1 we can neglect tlze term proportional to 6.
Then Eq. (7) is rewritten as i i¢ = H,¢. Its solution is

¢i1(t) = ¢1(0)exp [—%/ Q(z)dz},
0

&(t) = &(0) exp [—% / Q+(t)dt:|. (10)
0

Now we consider a double adiabatic sequence which starts
at t = 0. The time dependence of Rabi frequency 2(#) and
detuning §(¢) is illustrated in Fig. 2(a). The system is initially in
state |1(¢)). For initial positive detuning §(0) > 0 and 2((0) =
0 we find ©2(0) = §(0) and therefore 6(0) = 0. From Eq. (6) the
initial dressed stateis | /(¢)) and ¢;(0) = 1. The time-dependent
probability amplitudes are

c(t) = ¢1(t) cos 0(1),
c2(t) = —¢1(t) sinO(t). (11

After the end of the first adiabatic passage at time T the de-
tuning is negative 6(7) < 0 and Q(T) = —§(T). Therefore the
mixing angle 6(7) = m /2, and the system ends in state |2(¢))
with o2(T) = —&(T) = —exp[—1 [} Q_(1)dt] = —e'5.
We denote the mixing angle and the probability amplitudes
for the second adiabatic passage as 6, ¢} (), c5(1), ¢|(t), &(1).
At the beginning of the second adiabatic passage the detuning
is positive §(T) > 0 and 6'(T) = 0. At time t = T the system
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is in state |2(¢)). From Eq. (6) the dressed state is now |1 1(z)).
The probability amplitude c,(z) of state |2(¢)) is constant
around ¢ = T due to the absence of interaction with the laser
field. Therefore, the initial probability amplitude of dressed
state |11(2)) is ¢5(T) = cp(T) = —&(T). During the second
adiabatic passage the time-dependent probability amplitudes
are expressed similarly to Eq. (11):

ci(@t) = &(t)sin0' (1),
cy(t) = &(t)cos ' (1). (12)
From Egq. (10) the probability amplitude of dressed state
[11(t)) is &(t) = &(T)exp[—35 le Q. (t)dt]. After the end of

the second adiabatic passage the mixing angle is 0'(2T) = /2
and the system ends in state |1(z)) with probability amplitude

\QT) = &2T)

i 2T i T
= —exp |:_§/;‘ S2+(t)dti| exp [—5/0 Q_(t)dt:|.

13)

For two identical laser pulses with identical time dependencies
of the detuning we find ¢;(2T) = —1.

This 7 phase shift can be compensated if the second laser
pulse has the opposite sign of Rabi frequency 29 — — (or
a w phase shift of the laser field), as shown in Fig. 2(b). To
diagonalize the Hamiltonian for the second adiabatic passage,
we modify Eq. (8):

tan[20(¢)] = —Q0(2)/8(2),

sin[0(1)] = — %(1 — %), (14)
1 3(t)
cos[O(1)] = 5(1 + %>

In this case after the end of the second adiabatic passage
0'(2T) = —m/2 and ¢;2T) = 1.

To illustrate this model we have numerically calculated
the time dynamics of probability amplitudes of a two-level
atom interacting with two chirped laser pulses with time-
dependent Rabi frequency 2¢;(t) = Qo exp[—(t — ¢ j)z /2w?]
and detuning §;(t) = s(t — t;), where j =1, 2, as shown in
Fig. 2(a). The peak Rabi frequency is €y/27 = 20 MHz, the
chirp of detuning is s;/2w = —50 MHz/us, and the pulse
width is w = 0.12 us. The centers of the pulses are located
at the times #; = 0.5 us and , = 1.5 us. The conditions of
Fig. 2(b) are similar, but the second pulse has the opposite sign
of Rabi frequency. Figures 2(c) and 2(d) show the numerically
calculated time dependence of probability P; = |c| ()]? to find
the system in initial state |1). Figures 2(e) and 2(f) show the
numerically calculated phase arg[c;(¢)] of state |1). The exact
solution of the Schrodinger equation with the Hamiltonian
from Eq. (1) is compared with the adiabatic approximation
from Egs. (10)-(14). Good agreement between the exact
solution and adiabatic approximation is observed. Notably,
the disagreement between exact and adiabatic phase dynamics
in the region where c;(¢) & 0 does not affect the subsequent
behavior of the system. After double adiabatic sequence the
system returns to the initial state with phase shift & in the
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left-hand panel of Fig. 2 and with zero phase shift in the
right-hand panel of Fig. 2.

III. ADIABATIC PASSAGE ACROSS STARK-TUNED
FORSTER RESONANCE

The energy of dipole-dipole interaction of two Rydberg
atoms is determined by the interatomic distance which cannot
be changed on short time scales. Therefore we need to consider
the adiabatic rapid passage with rectangular shape of the
time-dependent Rabi frequency. To achieve high fidelity of
the population transfer, we use a nonlinear time dependence
of the detuning from the resonance:

Si(t) = s1(t — 1) + 52t — 1), (15)

Here the exact resonance occurs at the times #, with k = 1,2.
The detuning is slowly varied across the resonance and is
rapidly increased before and after the resonance, which is close
to the approach of high-fidelity laser driving [40]. Figure 3

. 2
51 |G (b)
=
E5 1
g c
14
0
¥ 50{(c) (d)
s
&
S o
[e)]
c
<
5 -50
he)
1.0
0.8} (e) ()
c
S 06
©
3 04
[e}
o 0.2
0.0
3
,1(9) (h)
2 1
g
& 0
-1
-2
-3

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
time (us) time (us)

FIG. 3. Comparison between the schemes of double adiabatic
rapid passage with linearly chirped Gaussian pulses (left-hand panel),
and with rectangular shape of time-dependent Rabi frequency and
nonlinear time dependence of detuning from the resonance (right-
hand panel). (a), (b) Time dependence of Rabi frequency 2(z). (c),
(d) Time dependence of detuning from the resonance §(¢). (e), (f) Time
dependence of the population of state |1). (g), (h) Time dependence
of the phase of state |1).
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illustrates the difference between the conventional scheme of
adiabatic rapid passage, which uses chirped Gaussian pulses
with linear time dependence of detuning (left-hand panel), and
the scheme of adiabatic rapid passage with rectangular shape
of the time-dependent Rabi frequency and nonlinear time
dependence of detuning (right-hand panel). The parameters
of the pulses for the left-hand panel of Fig. 3 are Qu(t) =
Qo exp[—(t — 1)?/2w?] with Qo/27 = 2MHz, w = 0.12 s,
and 6;(¢) = s1(t — ;) with s; = —10 MHz/us. For the right-
hand panel of Fig. 3 Rabi frequency is constant Qo (t)/27 =
2.1 MHz, and the detuning is described by Eq. (15) with
s1/2m = —10 MHz/us, and s,/2m = —2600 MHz/us>. The
centers of the pulses are located at times #; = 0.45 us and
t; = 1.35 ps. The population error for the final state of the
system is found to be below 3 x 107> in both cases. The phase
shift is equal to 7 in both cases.

Stark-tuned Forster resonance required for the implementa-
tion of the proposed scheme must meet the following criteria:
(1) the lifetimes of Rydberg states must be sufficiently long
to avoid the decay of coherence during the gate operation
due to spontaneous and blackbody radiation (BBR) induced
transitions; (ii) the initial Forster energy defect must be
sufficiently large to allow for rapid turning off the interaction
between atoms at the beginning and the end of the adiabatic
passage; (iii) the selected interaction channel must be well
isolated from the other channels to avoid break-up or dephasing
of the adiabatic population transfer.

In our previous work [41] we have studied the structure of
the Forster resonances |nS,n'S) — |[nP,(n’ — 1) P) in Rb and
Cs Rydberg atoms. The energy defect for Cs |nS,(n + 6)S) —
|[nP,(n + 5)P) Forster resonance in a zero electric field is
shown in Fig. 4(a) for the range of principal quantum num-
bers 80 < n < 130. We have selected the [90S5;,2,9651,2) —
[90P1/2,95 Py /») Stark-tuned Forster resonance for the further
numerical simulations. This resonance has the energy defect
80/2mr =75.6 MHz in a zero electric field. In contrast to
the resonances involving |nP3),) states, this resonance has
no Stark splitting in the electric field.

The Stark diagram for Cs Rydberg states with |m ;| = 1/2
is shown in Fig. 4(b). The dc electric field is aligned along the
z axis. The 908 state is selected as zero energy level. We have
calculated the radial matrix elements using the quasiclassical
approximation [42] and the method of quantum defects
[43—45]. The Stark shift for nS and nP Rydberg states is close
to quadratic and is approximated as

8(E) = —JaE>. (16)

The polarizabilities «, listed in Table I, have been found from
the numeric approximation of the Stark energy shift for the
electric field £ < 50 mV/cm. The exact Forster resonance
[90S1/2,96S81/2) — |90P;,2,95 P, ) occurs in the electric field
E =29.75 mV/cm.

The operator of dipole interaction between atoms A and B
with interatomic separation R along the z axis is

2
e

Vg = ———(@-b—3a,b,). 17

dd 47‘[80R3( a; z) ( )

Here a is a vectorial position of the electron in atom A and bis a

vectorial position of the electron in atom B [46]. For the states

[Va) = 190S), |vp) = 196S), |va) = |90P), and |yg) = [95P)
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FIG. 4. (a) Energy defect of the Forster resonance

[nS,(n+6)S) —» [nP,(n +5)P) in Cs Rydberg atoms. (b)
Stark diagram for Cs Rydberg states with |m ;| = 1/2. The 90S state
is selected as zero energy level. (c) Scheme of possible transitions for
various channels of the [905,96S) — |[90P,95P) Forster resonance
in Cs. The nS states with m; = 1/2 are initially excited.

the matrix elements for the dipole-dipole interaction operator
are written as [41]

(&
My, mg 3,k
A4mmmb = Qk,

JamMa Jsmep
C]umnlchbmbl -q° (18)

Qr=—6 Z C]ql

g=—1
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TABLE I. Calculated polarizabilities of Cs Rydberg states

State |m ;| [ (vl\;[gjﬂ ]
[90S1/2) 1/2 3505
[96S1/2) 1/2 5529
[90 P, ) 1/2 72511
[90P3)5) 1/2 103738
[90P5)5) 3/2 87196
[95 P 2) 1/2 107380
[95P5)5) 1/2 153574
|95 P;5) 3/2 129118

Here Q) is the angular factor (see Table II) which is
only nonzero for m, + m; = my + mg, and the dipole-dipole
interaction energy C3; coefficient is expressed as

> (Vellrallva) (vl Irs|1vs)
Ve + D2+ 1)’

with q2 = ¢2 /4mey, e is the electronic charge, €; is the
permittivity of free space, and (y,||r.||v,) is a reduced matrix
element in the fine structure basis:

Vallrllya) = (= 1) a+"’vmaX(la,la)
% v/ 2ja + 13/2ja + 1{1;1/21 {}r (20)

Here r is the radial matrix element.

In our numerical simulations we considered the Forster
resonances [90S5,96S) — |nP,n’P) and the subsequent
transitions [nP,n’' P) — |\mS,m’'S), |nP,n’ P) — \mD,m’'D),
[nP,n' Py — |mD,m'S), |nP,n'P)— |mS,m'D)  with
Forster energy defect Ay less than 1 GHz and principal
quantum numbers 88 < n,n’,m,m’ < 98. We have identified
116 resonances, taking into account fine structure and Stark
sublevels of the Rydberg states. Examples of such resonances
are given in Table II.

We have found that only channels 1-4 from Table II
are responsible for the time dynamics of the initial col-
lective state [90S;,2,m, = 1/2; 968 ,2,m; = 1/2). This cor-
responds to the eight most important Forster interaction
channels |y, mq, vy mp) — Yo Mq, yg mg) for different Stark
sublevels, which are listed in Table IIT and shown in Fig. 4(c).
In particular, the Forster resonance [90P;,;,95P)) —
|88 D32, 95Dj3,) with the detuning 288.9 MHz in zero electric

Csila,b,o,B) =

19)

TABLE II. Examples of Forster resonance channels |y,, y») —
|Ve, vp) with Forster energy defect A, and Forster interaction energy
C3'k

va)  Iw)  ve)  lvg)  Ag(MHz) C3x (MHz um?)

1 9081, 9651, 9Py, 95P,, 75610  —154968
2 908, 968, 90P,, 95Py, 356525 162160
390y, 965, 90Py, 95P,,  408.152 149112
4 90S;, 96S;,, 90Py, 95Py,  689.067  —156032
5 908, 968, 95Pi,, 90P, 75610 -26
6 90Py;, 95Py, 885y, 97D;, —644.278 —240
7 90Py;, 95Pi, 88Dy 95D;,  288.906 11043
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TABLE 1II. Forster resonance channels |y, m,, ¥, mp) —
|Yo My, Yp mg) and their angular factors. Here m, = m;, = 1/2.

[Va) [vs) [Va) lvs) Me mg Ok
1 9081, 9681, 90P,, 95P,, 1/2  1/2  -2/3
2 9082 9651, 90Pi,, 95Py, 1/2 12 —242/3
39081, 9681, 90P, 95Py, —1/2 3/2  —+/2/3
4 9081, 96Si,, 90Ps, 95P, 12 1/2 —242/3
5 908, 9651, 90Py, 95P,  3/2  —1/2  —+/2/3
6 908, 9651, 90Py, 95Py, 1/2 172 —4/3
7 9081, 9681, 90Py, 95P;, —1/2 3/2  —1/4/3
8 90S;, 9681, 90P;, 95Py,  3/2  —1/2  —1/43

field has the effect below 10~* on the calculated probability
to find the atomic system in the state [90S;,2; 96S5;,2) and its
phase after the end of the adiabatic passage. Therefore in our
simulations of the CNOT gate this channel and other transitions
to D and S states were not taken into account.

The time dependence of the electric field required to
form the nonlinearly shaped detuning &;(t) = s;(t — ) +
so(t — l‘k)5 of the |9OS[/2,96S1/2> — |90P1/2,95P1/2) Forster
resonance with s;/27 = —10 MHz/us and s,/27 =
—2600 MHZ//LSS, t; =450 ns, and f, = 1350 ns is shown
in Fig. 5(a). The time-dependent Forster energy defects for the
most important channels from Table III are shown in Fig. 5(b).
The off-resonant excitation of various Forster channels, partial
overlapping of the resonances, and the finite lifetimes of
Rydberg states are the most important limiting factors for
quantum gate performance.

The time dependence of the population [Fig. 5(c)] and
phase [Fig. 5(d)] of the collective [90S;,2,96S5],,) state for two
interacting Rydberg atoms located at distance R =25 um
along the z axis was calculated taking into account all 116
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FIG. 5. (a) Time dependence of the electric field for Stark
tuning of the [90S,,,,96S,,2) — |90P;/,,95P;,) Forster resonance.
(b) Time dependence of the energy defects of the interaction channels
listed in Table I for the |905,96S) — |90P,95 P) Forster resonance.
(c) Time dependence of the population of the collective state
[90S),2,965,,). (d) Time dependence of phase of the collective state
[9081/2,968,2).
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FIG. 6. Double adiabatic passage of the Stark-tuned Forster
resonance for different interatomic distances R with error correction.
(a), (b), (c) Time dependencies of population of the collective state
[9081/2,968,>) calculated for R = 24, 25, and 26 um, respectively.
(d), (e), (f) Time dependencies of phase of the collective state
[9051/2,968,>) calculated for d = 24, 25, and 26 pum, respectively.
(g), (h), (i) Calculated truth tables of a CNOT gate for R = 24, 25, and
26 um, respectively. The overlap with the ideal truth table is shown
above each plot.

interaction channels (examples are given in Table II and
Table III). The off-resonant interaction channels lead to the
undesirable phase shift, which is clearly seen in Fig. 5(d).
This shift can be partly compensated by adjusting the shape
of the electric-field pulse, for example, by changing the time
position of the second resonance to #, = 1350.6 ns. This value
is sensitive to the accuracy of the calculated polarizability of
Rydberg states.

With this correction we have calculated the time de-
pendence of the population and phase of the collective
[9051/2,96S51,2) state for slightly different interatomic dis-
tances R = 24 pum (left-hand panel in Fig. 6), R =25 um
(central panel in Fig. 6), and R = 26 um [right-hand panel in
Fig. 6(b)]. Our calculations have shown that this variation of
the interatomic distance leads to small phase changes at the
end of the adiabatic passage, thus evidencing that our method
to perform two-qubit quantum gates is insensitive to the atom
position uncertainty.

To estimate the fidelity of our schemes for two-qubit
gates in realistic experimental conditions we have numerically
calculated the truth table of a CNOT gate (Fig. 1) using a
master equation for the density matrix and taking into account
finite lifetimes of the Rydberg levels. We have also taken into
account the phase shifts of the [90S;,2) and |96S;,,) Rydberg
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states in the time-dependent electric field by correcting the
phase of the laser pulse 3 at Fig. 1(b) individually for control
and target qubit.

We have solved the master equation

p(t) = —%[H,p(t)] + L{p(®)] 1)
with
Lipl = L[p] + L?[p]. (22)

The Liouvillian superoperator accounts for depopulation of
the levels involved in the gate operation due to spontaneous
and blackbody-driven transitions to other Rydberg levels |r)
and to low-lying states. The superoperator also includes terms
that repopulate the levels used for the gate, since blackbody-
driven transitions work in both directions between pairs of
Rydberg states. For simplicity we have only included the terms
that depopulate the Rydberg gate levels. This approximation
slightly overestimates the gate errors thereby providing a
conservative estimate of the gate fidelity. High-n Rydberg
states decay to both neighboring Rydberg states and low-lying
states, with approximately equal rates in these two decay
paths [47]. Since both types of decay take the atom out of
the computational subspace with high probability we have
simply described the decay as being solely due to transitions
to neighboring Rydberg states by setting

. 1 N A
L(a’b)p = —E Z yr [(T,(;l’b)p + po’r(f!b)]’ (23)
r

where 6%P =, lm)(n|(.p) is a transition operator for each
of the atoms. The sum is taken over all Rydberg states |r)
included in the simulations.

The truth tables were calculated for the same interatomic
distances as previously (R = 24, 25, and 26 um). We have
found that for R = 25 um the error is less than 1%, and it
only slightly increases when the distance between the atoms
is varied. The main source of this error is revealed to be
finite lifetimes of Rydberg atoms. In a 300 K environment
the Rydberg states used have lifetimes [47] tgos = 270 pus,
Toes = 314 US, Togop = 361 US, Tosp = 406 MS.

We have studied the phase errors by calculation of the
fidelity of the Bell states which are created by a Hadamard
gate applied to a control qubit, and a subsequent CNOT applied
to a pair of qubits. The Bell states of a bipartite quantum system
are defined as following:

O = —(100) + 1)),
NG

1
®~ = —(|00) — [11)),
ﬁ(l ) —I11)

wt = o1 + 110,
V2
w-— L
V2

The density matrices of the generated Bell states after using
maximume-likelihood reconstruction are shown in Fig. 7 for
interatomic distance R = 25 um. The calculated Bell state
fidelities taking into account Rydberg lifetimes were better

(24)

(101) — [10)).
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FIG. 7. The reconstructed density matrices of the (a) @, (b) ®~,
(c) W', and (d) ¥~ Bell states.

than 0.99. For R = 24 um and R = 26 um the fidelities are
reduced to 0.965 and 0.984, respectively. Variation of the
delay of the second resonance by 100 ps also reduces the
Bell fidelities to 0.97 at R = 25 pum.

Atomic qubits trapped in an optically defined array are sub-
ject to only small position variations. For example using trap
parameters from [12,48] and assuming an atom temperature
of T = 10 uK gives an in-plane position standard deviation of
6x ~ 0.1 um and an out-of-plane variation of §z ~ 1.5 um.
This implies a variation around the 25 ©m nominal separation
of £0.15. Comparing with Fig. 6 we anticipate less than 0.001
variation in gate fidelity for these conditions. Our calculations
therefore show that the proposed gate protocol is insensitive
to realistic experimental variations in the atom position.

IV. SUMMARY

We investigated the adiabatic passage across a Forster
resonance which can be considered as an alternative to the
Rydberg blockade for implementation of two-qubit quantum
gates with Rydberg atoms.

The gate fidelity has been found to be limited mainly
by finite lifetimes of Rydberg states and dephasing due to
off-resonant excitation of various Forster interaction channels.
We have shown, however, that only the limited number of
channels affects the population dynamics of the initially
excited collective state. The decay of Rydberg population
during the gate gives the radiative decay error of approximately
102 which is close to the calculated gate error in Fig. 6(h)
and Fig. 7. Reducing this error requires shorter gate times
and larger separation from the neighboring Forster resonances
which can be observed only for the lower states with shorter
lifetimes [see Fig. 4(a)]. Although quantum gates based
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on Rydberg blockade in theory could provide the errors
below 10~* [49], such fidelity has not yet been demonstrated
experimentally.

In contrast to the Rydberg-blockade gates, our approach
does not require strong interaction between Rydberg atoms
and can be potentially advantageous for implementing gates
at large interatomic spacings. Although a 10™* gate error
is widely considered to be necessary for scalable quantum
computation with a realistic overhead in terms of the number of
physical qubits the availability of long-range gates with lower
fidelity can be a useful feature of a large-scale architecture.
In order to move quantum information between qubits with
large physical separation one can execute a string of swap
gates using high-fidelity local operations. The alternative is to
use a lower-fidelity gate that operates at long range to create
Bell pairs with moderate fidelity, followed by entanglement
purification with local operations [50], and teleportation [51].
The gate protocol analyzed here provides CNOT truth table
fidelity of >0.99 and creates maximally entangled Bell pairs
with fidelity >0.986. With a qubit spacing of ~4 um in a 2D
array [12] the R = 25 um range gate we analyze here would

PHYSICAL REVIEW A 94, 062307 (2016)

enable entanglement of arbitrary pairs in a block of 25 qubits
suitable for encoding medium-sized logical qubits.

The Forster resonances in a time-varying electric field have
been recently studied experimentally [27]. It has been shown
that even for moderate interaction strengths it is possible to
observe them on a short time scale of 100 ns.

ACKNOWLEDGMENTS

This work was supported by the Russian Science Founda-
tion, Grant No. 16-12-00028, in the part on numeric simulation
of the two-qubit gates and Bell states, by RFBR Grants
No. 14-02-00680 and No. 16-02-00383, by Novosibirsk State
University, and by the Russian Academy of Sciences. M.S.
was supported by NSF Award No. 1521374, the AFOSR
MURI on Quantum Memories and Light-Matter Interfaces,
and the ARL-CDQI through Cooperative Agreement No.
WOI11NF-15-2-0061. S.B. was supported by Engineering and
Physical Sciences Research Council (EPSRC) Grant No.
EP/K022938/1.

[1] M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information (Cambridge University Press, 2011).

[2] C. J. Ballance, T. P. Harty, N. M. Linke, M. A. Sepiol, and
D. M. Lucas, Phys. Rev. Lett. 117, 060504 (2016).

[3] J.P. Gaebler, T.R. Tan, Y. Lin, Y. Wan, R. Bowler, A. C. Keith, S.
Glancy, K. Coakley, E. Knill, D. Leibfried, and D. J. Wineland,
Phys. Rev. Lett. 117, 060505 (2016).

[4] L. 1. Ryabtsev, D. B. Tretyakov, and I. I. Beterov, J. Phys. B 38,
S421 (2005).

[5] M. Saffman, T. G. Walker, and K. Mglmer, Rev. Mod. Phys. 82,
2313 (2010).

[6] D. Comparat and P. Pillet, J. Opt. Soc. Am. B 27, A208 (2010).

[7] I. Ryabtsev, I. Beterov, D. Tretyakov, V. Entin, and E. Yakshina,
Phys. Usp. 59, 196 (2016).

[8] M. Saffman, J. Phys. B 49, 202001 (2016).

[9] T. Xia, M. Lichtman, K. Maller, A. W. Carr, M. J. Piotrowicz,
L. Isenhower, and M. Saffman, Phys. Rev. Lett. 114, 100503
(2015).

[10] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Coté, and
M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).

[11] M. D. Lukin, M. Fleischhauer, R. C6té, L. M. Duan, D. Jaksch,
J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901 (2001).

[12] K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J. Piotrowicz,
A. W. Carr, L. Isenhower, and M. Saffman, Phys. Rev. A 92,
022336 (2015).

[13] K. A. Safinya, J. F. Delpech, F. Gounand, W. Sandner, and T. F.
Gallagher, Phys. Rev. Lett. 47, 405 (1981).

[14] W. R. Anderson, J. R. Veale, and T. F. Gallagher, Phys. Rev.
Lett. 80, 249 (1998).

[15] I. Mourachko, D. Comparat, F. de Tomasi, A. Fioretti, P.
Nosbaum, V. M. Akulin, and P. Pillet, Phys. Rev. Lett. 80, 253
(1998).

[16] S. Westermann, T. Amthor, A. L. de Oliveira, J. Deiglmayr,
M. Reetz-Lamour, and M. Weidemuller, Eur. Phys. J. D 40, 37
(2006).

[17] J. Nipper, J. B. Balewski, A. T. Krupp, B. Butscher, R. Low,
and T. Pfau, Phys. Rev. Lett. 108, 113001 (2012).

[18] B. G. Richards and R. R. Jones, Phys. Rev. A 93, 042505 (2016).

[19] J. M. Kondo, D. Booth, L. F. Gongalves, J. P. Shaffer, and L. G.
Marcassa, Phys. Rev. A 93, 012703 (2016).

[20] B.Pelle, R. Faoro, J. Billy, E. Arimondo, P. Pillet, and P. Cheinet,
Phys. Rev. A 93, 023417 (2016).

[21] A. Paris-Mandoki, H. Gorniaczyk, C. Tresp, I. Mirgorodskiy,
and S. Hofferberth, J. Phys. B 49, 164001 (2016).

[22] A. Browaeys, D. Barredo, and T. Lahaye, J. Phys. B 49, 152001
(2016).

[23] L. I. Ryabtsev, D. B. Tretyakov, L. I. Beterov, and V. M. Entin,
Phys. Rev. Lett. 104, 073003 (2010).

[24] A. Tauschinsky, C. S. E. van Ditzhuijzen, L. D. Noordam, and
H. B. van Linden van den Heuvell, Phys. Rev. A 78, 063409
(2008).

[25] C.S. E. van Ditzhuijzen, A. Tauschinsky, and H. B. van Linden
van den Heuvell, Phys. Rev. A 80, 063407 (2009).

[26] D. B. Tretyakov, V. M. Entin, E. A. Yakshina, I. I. Beterov, C.
Andreeva, and I. I. Ryabtsev, Phys. Rev. A 90, 041403 (2014).

[27] E. A. Yakshina, D. B. Tretyakov, I. I. Beterov, V. M. Entin,
C. Andreeva, A. Cinins, A. Markovski, Z. Iftikhar, A. Ekers,
and I. I. Ryabtsev, Phys. Rev. A 94, 043417 (2016).

[28] I. I. Ryabtsev, D. B. Tretyakov, 1. I. Beterov, V. M. Entin, and
E. A. Yakshina, Phys. Rev. A 82, 053409 (2010).

[29] S. Ravets, H. Labuhn, D. Barredo, L. Beguin, T. Lahaye, and A.
Browaeys, Nat. Phys. 10, 914 (2014).

[30] S. Ravets, H. Labuhn, D. Barredo, T. Lahaye, and A. Browaeys,
Phys. Rev. A 92, 020701 (2015).

[31] B. W. Shore, Manipulating Quantum Structures Using Laser
Pulses (Cambridge University Press, 2011).

[32] L. P. Yatsenko, N. V. Vitanov, B. W. Shore, T. Rickes, and K.
Bergmann, Opt. Commun. 204, 413 (2002).

[33] V. S. Malinovsky and J. L. Krause, Eur. Phys. J. D 14, 147
(2001).

062307-8


https://doi.org/10.1103/PhysRevLett.117.060504
https://doi.org/10.1103/PhysRevLett.117.060504
https://doi.org/10.1103/PhysRevLett.117.060504
https://doi.org/10.1103/PhysRevLett.117.060504
https://doi.org/10.1103/PhysRevLett.117.060505
https://doi.org/10.1103/PhysRevLett.117.060505
https://doi.org/10.1103/PhysRevLett.117.060505
https://doi.org/10.1103/PhysRevLett.117.060505
https://doi.org/10.1088/0953-4075/38/2/032
https://doi.org/10.1088/0953-4075/38/2/032
https://doi.org/10.1088/0953-4075/38/2/032
https://doi.org/10.1088/0953-4075/38/2/032
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1103/RevModPhys.82.2313
https://doi.org/10.1364/JOSAB.27.00A208
https://doi.org/10.1364/JOSAB.27.00A208
https://doi.org/10.1364/JOSAB.27.00A208
https://doi.org/10.1364/JOSAB.27.00A208
https://doi.org/10.3367/UFNe.0186.201602k.0206
https://doi.org/10.3367/UFNe.0186.201602k.0206
https://doi.org/10.3367/UFNe.0186.201602k.0206
https://doi.org/10.3367/UFNe.0186.201602k.0206
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1088/0953-4075/49/20/202001
https://doi.org/10.1103/PhysRevLett.114.100503
https://doi.org/10.1103/PhysRevLett.114.100503
https://doi.org/10.1103/PhysRevLett.114.100503
https://doi.org/10.1103/PhysRevLett.114.100503
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevLett.85.2208
https://doi.org/10.1103/PhysRevLett.87.037901
https://doi.org/10.1103/PhysRevLett.87.037901
https://doi.org/10.1103/PhysRevLett.87.037901
https://doi.org/10.1103/PhysRevLett.87.037901
https://doi.org/10.1103/PhysRevA.92.022336
https://doi.org/10.1103/PhysRevA.92.022336
https://doi.org/10.1103/PhysRevA.92.022336
https://doi.org/10.1103/PhysRevA.92.022336
https://doi.org/10.1103/PhysRevLett.47.405
https://doi.org/10.1103/PhysRevLett.47.405
https://doi.org/10.1103/PhysRevLett.47.405
https://doi.org/10.1103/PhysRevLett.47.405
https://doi.org/10.1103/PhysRevLett.80.249
https://doi.org/10.1103/PhysRevLett.80.249
https://doi.org/10.1103/PhysRevLett.80.249
https://doi.org/10.1103/PhysRevLett.80.249
https://doi.org/10.1103/PhysRevLett.80.253
https://doi.org/10.1103/PhysRevLett.80.253
https://doi.org/10.1103/PhysRevLett.80.253
https://doi.org/10.1103/PhysRevLett.80.253
https://doi.org/10.1140/epjd/e2006-00130-3
https://doi.org/10.1140/epjd/e2006-00130-3
https://doi.org/10.1140/epjd/e2006-00130-3
https://doi.org/10.1140/epjd/e2006-00130-3
https://doi.org/10.1103/PhysRevLett.108.113001
https://doi.org/10.1103/PhysRevLett.108.113001
https://doi.org/10.1103/PhysRevLett.108.113001
https://doi.org/10.1103/PhysRevLett.108.113001
https://doi.org/10.1103/PhysRevA.93.042505
https://doi.org/10.1103/PhysRevA.93.042505
https://doi.org/10.1103/PhysRevA.93.042505
https://doi.org/10.1103/PhysRevA.93.042505
https://doi.org/10.1103/PhysRevA.93.012703
https://doi.org/10.1103/PhysRevA.93.012703
https://doi.org/10.1103/PhysRevA.93.012703
https://doi.org/10.1103/PhysRevA.93.012703
https://doi.org/10.1103/PhysRevA.93.023417
https://doi.org/10.1103/PhysRevA.93.023417
https://doi.org/10.1103/PhysRevA.93.023417
https://doi.org/10.1103/PhysRevA.93.023417
https://doi.org/10.1088/0953-4075/49/16/164001
https://doi.org/10.1088/0953-4075/49/16/164001
https://doi.org/10.1088/0953-4075/49/16/164001
https://doi.org/10.1088/0953-4075/49/16/164001
https://doi.org/10.1088/0953-4075/49/15/152001
https://doi.org/10.1088/0953-4075/49/15/152001
https://doi.org/10.1088/0953-4075/49/15/152001
https://doi.org/10.1088/0953-4075/49/15/152001
https://doi.org/10.1103/PhysRevLett.104.073003
https://doi.org/10.1103/PhysRevLett.104.073003
https://doi.org/10.1103/PhysRevLett.104.073003
https://doi.org/10.1103/PhysRevLett.104.073003
https://doi.org/10.1103/PhysRevA.78.063409
https://doi.org/10.1103/PhysRevA.78.063409
https://doi.org/10.1103/PhysRevA.78.063409
https://doi.org/10.1103/PhysRevA.78.063409
https://doi.org/10.1103/PhysRevA.80.063407
https://doi.org/10.1103/PhysRevA.80.063407
https://doi.org/10.1103/PhysRevA.80.063407
https://doi.org/10.1103/PhysRevA.80.063407
https://doi.org/10.1103/PhysRevA.90.041403
https://doi.org/10.1103/PhysRevA.90.041403
https://doi.org/10.1103/PhysRevA.90.041403
https://doi.org/10.1103/PhysRevA.90.041403
https://doi.org/10.1103/PhysRevA.94.043417
https://doi.org/10.1103/PhysRevA.94.043417
https://doi.org/10.1103/PhysRevA.94.043417
https://doi.org/10.1103/PhysRevA.94.043417
https://doi.org/10.1103/PhysRevA.82.053409
https://doi.org/10.1103/PhysRevA.82.053409
https://doi.org/10.1103/PhysRevA.82.053409
https://doi.org/10.1103/PhysRevA.82.053409
https://doi.org/10.1038/nphys3119
https://doi.org/10.1038/nphys3119
https://doi.org/10.1038/nphys3119
https://doi.org/10.1038/nphys3119
https://doi.org/10.1103/PhysRevA.92.020701
https://doi.org/10.1103/PhysRevA.92.020701
https://doi.org/10.1103/PhysRevA.92.020701
https://doi.org/10.1103/PhysRevA.92.020701
https://doi.org/10.1016/S0030-4018(02)01303-2
https://doi.org/10.1016/S0030-4018(02)01303-2
https://doi.org/10.1016/S0030-4018(02)01303-2
https://doi.org/10.1016/S0030-4018(02)01303-2
https://doi.org/10.1007/s100530170212
https://doi.org/10.1007/s100530170212
https://doi.org/10.1007/s100530170212
https://doi.org/10.1007/s100530170212

TWO-QUBIT GATES USING ADIABATIC PASSAGE OF ...

[34] K. Bergmann, H. Theuer, and B. Shore, Rev. Mod. Phys. 70,
1003 (1998).

[35] D. Mgiller, L. B. Madsen, and K. Mglmer, Phys. Rev. Lett. 100,
170504 (2008).

[36] D. D. Bhaktavatsala Rao and K. Mglmer, Phys. Rev. A 89,
030301 (2014).

[37] 1. 1. Beterov, M. Saffman, E. A. Yakshina, V. P. Zhukov, D. B.
Tretyakov, V. M. Entin, I. I. Ryabtsev, C. W. Mansell, C.
MacCormick, S. Bergamini, and M. P. Fedoruk, Phys. Rev. A
88, 010303(R) (2013).

[38] I. 1. Beterov, M. Saffman, E. A. Yakshina, V. P. Zhukov, D.
B. Tretyakov, V. M. Entin, I. I. Ryabtsev, C. W. Mansell, C.
MacCormick, S. Bergamini, and M. P. Fedoruk, Laser Phys. 24,
074013 (2014).

[39] P. Berman and V. Malinovsky (eds.), Principles of Laser
Spectroscopy and Quantum Optics (Princeton University Press,
2011).

[40] M. G. Bason, M. Viteau, N. Malossi, P. Huillery, E. Arimondo,
D. Ciampini, R. Fazio, V. Giovannetti, R. Mannella, and O.
Morsch, Nat. Phys. 8, 147 (2012).

PHYSICAL REVIEW A 94, 062307 (2016)

[41] I. 1. Beterov and M. Saffman, Phys. Rev. A 92, 042710
(2015).

[42] L. G. Dyachkov and P. M. Pankratov, J. Phys. B 27, 461
(1994).

[43] C.J. Lorenzen and K. Niemax, Z. Phys. A 315, 127 (1984).

[44] K.-H. Weber and C. J. Sansonetti, Phys. Rev. A 35, 4650 (1987).

[45] J. Deiglmayr, H. Herburger, H. SaBmannshausen, P. Jansen, H.
Schmutz, and F. Merkt, Phys. Rev. A 93, 013424 (2016).

[46] T. G. Walker and M. Saffman, Phys. Rev. A 77, 032723
(2008).

[47] 1. L. Beterov, L. I. Ryabtsev, D. B. Tretyakov, and V. M. Entin,
Phys. Rev. A 79, 052504 (2009).

[48] M. J. Piotrowicz, M. Lichtman, K. Maller, G. Li, S. Zhang, L.
Isenhower, and M. Saffman, Phys. Rev. A 88, 013420 (2013).

[49] L. S. Theis, F. Motzoi, F. K. Wilhelm, and M. Saffman, Phys.
Rev. A 94, 032306 (2016).

[50] C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A.
Smolin, and W. K. Wootters, Phys. Rev. Lett. 76, 722 (1996).

[51] D. Gottesman and I. L. Chuang, Nature (London) 402, 390
(1999).

062307-9


https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/RevModPhys.70.1003
https://doi.org/10.1103/PhysRevLett.100.170504
https://doi.org/10.1103/PhysRevLett.100.170504
https://doi.org/10.1103/PhysRevLett.100.170504
https://doi.org/10.1103/PhysRevLett.100.170504
https://doi.org/10.1103/PhysRevA.89.030301
https://doi.org/10.1103/PhysRevA.89.030301
https://doi.org/10.1103/PhysRevA.89.030301
https://doi.org/10.1103/PhysRevA.89.030301
https://doi.org/10.1103/PhysRevA.88.010303
https://doi.org/10.1103/PhysRevA.88.010303
https://doi.org/10.1103/PhysRevA.88.010303
https://doi.org/10.1103/PhysRevA.88.010303
https://doi.org/10.1088/1054-660X/24/7/074013
https://doi.org/10.1088/1054-660X/24/7/074013
https://doi.org/10.1088/1054-660X/24/7/074013
https://doi.org/10.1088/1054-660X/24/7/074013
https://doi.org/10.1038/nphys2170
https://doi.org/10.1038/nphys2170
https://doi.org/10.1038/nphys2170
https://doi.org/10.1038/nphys2170
https://doi.org/10.1103/PhysRevA.92.042710
https://doi.org/10.1103/PhysRevA.92.042710
https://doi.org/10.1103/PhysRevA.92.042710
https://doi.org/10.1103/PhysRevA.92.042710
https://doi.org/10.1088/0953-4075/27/3/012
https://doi.org/10.1088/0953-4075/27/3/012
https://doi.org/10.1088/0953-4075/27/3/012
https://doi.org/10.1088/0953-4075/27/3/012
https://doi.org/10.1007/BF01419370
https://doi.org/10.1007/BF01419370
https://doi.org/10.1007/BF01419370
https://doi.org/10.1007/BF01419370
https://doi.org/10.1103/PhysRevA.35.4650
https://doi.org/10.1103/PhysRevA.35.4650
https://doi.org/10.1103/PhysRevA.35.4650
https://doi.org/10.1103/PhysRevA.35.4650
https://doi.org/10.1103/PhysRevA.93.013424
https://doi.org/10.1103/PhysRevA.93.013424
https://doi.org/10.1103/PhysRevA.93.013424
https://doi.org/10.1103/PhysRevA.93.013424
https://doi.org/10.1103/PhysRevA.77.032723
https://doi.org/10.1103/PhysRevA.77.032723
https://doi.org/10.1103/PhysRevA.77.032723
https://doi.org/10.1103/PhysRevA.77.032723
https://doi.org/10.1103/PhysRevA.79.052504
https://doi.org/10.1103/PhysRevA.79.052504
https://doi.org/10.1103/PhysRevA.79.052504
https://doi.org/10.1103/PhysRevA.79.052504
https://doi.org/10.1103/PhysRevA.88.013420
https://doi.org/10.1103/PhysRevA.88.013420
https://doi.org/10.1103/PhysRevA.88.013420
https://doi.org/10.1103/PhysRevA.88.013420
https://doi.org/10.1103/PhysRevA.94.032306
https://doi.org/10.1103/PhysRevA.94.032306
https://doi.org/10.1103/PhysRevA.94.032306
https://doi.org/10.1103/PhysRevA.94.032306
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1103/PhysRevLett.76.722
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503
https://doi.org/10.1038/46503



